
Poisson and Negative Binomial Regression
Prediction models. But not for continuous or dichotomous outcomes. In these analyses,
your dependent variable is a frequency of some event. How many times did some specific
thing happen over a specified period of time? Relatively small counts. How many points
were scored in the hockey game? How many visits to the hospital in a year? How many
times did you go to the gym this month? That sort of thing.



Before running your Poisson:
Linear regressions are way easier and faster to run. And they give you similar information.
So it’s not a bad idea to explore a phenomenon first by using linear regression (designing,
defining, and refining your model) before throwing away those outputs and running that
same model as a Poisson or negative binomial regression… you know, so it’s accurate.

Once you have your model worked out, you should examine the dependent variable a bit.



Evaluating your dependent variable:
This example will use hospital data, evaluating the frequency of older patients being
admitted for fall-related injuries. The dependent variable will be the number of falls
experienced over a specified period of time.

It is important to analyze your dependent variable ahead of time so you know which
model (Poisson or negative binomial) is most appropriate.



In SPSS, go to the Analyze tab.
then the Descriptive Statistics
option, and click on Explore.



This box comes up.

Every variable in your
database is in that left
column.



Drag any dependent variables you
might use in the regression models
into the Dependent List.

Each regression analysis will only
have one dependent variable. But
you might run multiple analyses.
If so, you’ll be “Explore”ing more
than one variable here.

Once selected, click OK.



You’ll get an output that looks like this:

If the mean and the variance are roughly equal
(the mean and spread of the number of hospital
visits) are equal, you’re probably fine to use
Poisson. If the variance is larger than the
mean, that’s called “overdispersion” and you
have to use negative binomial model.

It’s possible to have “underdispersion” (as seen
in the top variable), but it won’t be by much.

You’d like those numbers to be equal, but close
to equal is good enough.



With linear and logistic regression, you’ll find them in the “Regression” tab.
You won’t find Poisson or negative binomial regression there.  They’re in the 
“Generalized Linear Models” tab.  Select that option.

Next, run your Poisson or
negative binomial regression.
Finding them in the menu:



There are several options here.

If you’re going to do linear or logistic, 
just do those the normal way.

Poisson, negative binomial, or custom 
(customizing your negative binomial) 
can be done here.

Poisson is selected.

We’ll start there.



Click on the Response tab at the top.

From the Variables list on the left, select 
your dependent (outcome) variable.



Put that variable in the Dependent Variable 
box.

It has to be a count variable.  Don’t put a 
continuous or dichotomous variable there.

What I’ve placed in the dependent box is 
the number of times a patient has been 
admitted to a hospital for a fall-related 
injury.

Don’t hit “OK” yet.  First, go through all 
of the tabs at the top.



Predictors tab.

Now you select your predictors (sometimes 
called “independent variables”, but that’s a 
bit of a misnomer as these variables aren’t 
often independent of each other; if they’re 
strongly – or even mediumly – correlated 
with each other, they aren’t “independents” 
but they’re still predictors).

If you have fewer than 30 total subjects, it’s 
a little bit irresponsible to include multiple 
predictors.  Aim for at least 20 subjects per 
variable.  15 is a little low.  10 is really 
pushing it.  50 is great.



Put your predictors in the covariates box.  
There are conditions in which  you might 
use “Factors” and “Offset” (but not now).

Factors: It’s okay to just put them in the 
Covariates box.

Offset: Only use this if there’s a problem 
with the specified time period, as in: some 
subjects have a longer period than others.  
For example: What predicts the number of 
tournaments an athlete wins?  If one has 
competed for 2 years and another for 20 
years, then the subjects have differing 
levels of exposure.  Create a variable that 
reflects that and put it in the “Offset” box.



Model tab.

See all your predictors listed in the 
“Factors and Covariates” box?



Drag all of them over to the “Model” 
box.



Estimation tab.

Do nothing here.  You don’t even have 
to click on this one.  If you do, feel free 
to browse for a minute, and then click 
on the next one (Statistics).



Statistics tab.

There’s one option to select here.

Look at the bottom left row of checked 
boxes (beneath the word “Print”).

The last checked box is for “Parameter 
estimates”.  Beneath that box, indented 
like a subheading, is an unchecked box 
with this option: “Include exponential 
parameter estimates”.  

Click it.



The exponential parameter estimates box 
is clicked.

This will give you your “incidence rate 
ratio” (IRR), which is the statistic you 
actually report.  



EM Means tab.

Do nothing here.  Unless you placed one 
of your predictors in the “Factor” (rather 
than “Covariate”) box.

Then you’d just drag that predictor over 
from the left to the right.

But, in general, do nothing here.



Save tab.

Do nothing.



Export tab.

Do nothing.  Except for hit “OK”… 
which then runs the model you just 
created.



The “Output” screen will appear.

And gibberish that looks like this 
will appear at the top of it. 

Ignore it (but do notice that the 
“Probability Distribution” is 
listed as Poisson).

But some of the stuff that follows 
is important. 



This is just means and standard 
deviations.  Good to know, but you 
should already know all of this from 
running your descriptives (whole 
sample) and t-tests (subsamples).



Goodness of Fit box.

Goodness of fit means the values you observe 
in your sample match the values you’d expect 
to find in the population.

You want the Deviance row (last column: 
deviance/degrees of freedom) to be around 1.  
If it’s too big, switch to a negative binomial 
regression.  

Also, you want the AIC and BIC to be low.  
These values appear huge, but they’re not.  
“Huge” is relative.  This is okay.



Omnibus Test box.

This is another “Goodness of fit” statistic.

Does our model (with all of our predictors in it) predict our 
outcome better than a model with no predictors in it (a “null 
model” or “intercept-only model”)?

The omnibus test just says whether this model (with all of our 
predictors in it) is better than the null model.  

In this case (p<0.001), it’s way better than the null model.  
So we have an improvement in “fitness”.  We have “goodness 
of fit”.  It’s significant.  That’s all you care about.



Parameter Estimates:

For each one unit increase in the predictor variable (e.g., Hendrich score, age, etc.), 
you get the B value of predicted change in the expected log count of your dependent 
variable.  That’s sort of gibberish.  Just think of it this way: if the number is positive, 
then the relationship is positive.  Predictor goes up, count goes up.  Predictor goes 
down, count goes down.  A negative value is the inverse of that.  

The B on the left.  This is the 
unstandardized regression 
coefficient.  It represents the 
predicted change in expected 
log counts of the dependent 
variable (number of falls).  



Parameter Estimates:

Take your dependent variable (in this case the number of hospital admissions owing 
to falls) and multiply that number by the IRR.  If the IRR is less than 1, that would be  
a reduction in the frequency of occurrences.  If it’s positive, that would increase the 
frequency of occurrences.  

The real finding is Exp(B),
i.e., exponentiation of beta.
But you don’t report it as
Exp(B); report it as IRR,
i.e., Incidence Rate Ratio.

Just as the Exp(B) in a
logistic regression gets 
reported as the odds ratio
(OR), this is reported as
the IRR.



Parameter Estimates:

We want to know the effect of each of those predictors (in isolation of the other three)
on the dependent variable’s frequency of occurrences (number of falls).

What you actually report 
depends on what variable 
you care about.

In this list, there are four 
predictors.  These



Parameter Estimates:

Those columns offer some information, but nothing you will report.

Ignore these six columns:



Parameter Estimates:

Each of the four predictor variables has a different effect on the dependent variable.
For example: Age. For each additional year of age (holding the other three predictors
constant), we expect patients to experience a 0.8% increase in the number of falls.
The “Sig.” column provides a p-value, which is our confidence that this prediction
applies to the larger population, and not just our sample. In this case, if the null
hypothesis were true (i.e., age is totally unrelated to frequency of falling), there is a
1.3% chance we would have observed an effect on the IRR this large or larger.

The last four columns provide 
the data you will report:



Parameter Estimates:

The 95% confidence interval means we’re 95% sure that the true IRR in the actual
population falls between 0.2% and 1.5%. So for each additional year of age, holding
constant the other three predictors, we’re pretty sure (95% sure to be exact) that
patients in the larger population (not merely this sample) will experience between
0.2% more and 1.5% more falls.

The last two columns provide 
the 95% confidence interval 
for the IRR.



Parameter Estimates:

If what you care about is the effect of drugs, then look at the drug row.

Holding the other three predictors constant, if a patient is taking a drug on that list
(this is a list of drugs that might be inappropriate for older adults), that predicts an
IRR% increase in the number of falls experienced over the specified period. Notice
the p-value isn’t quite “significant” (p<0.05) though. Rather, it’s “trending”
(p<0.08).

Interpret the other predictors 
the same way.



Parameter Estimates:

Notice the IRR of ambient temperature is less than 1. That means the frequency that
the dependent variable occurs goes down. If the IRR were .500, that would be a 50%
reduction in the number of occurrences. If the IRR were .800, that would be a 20%
reduction. If it were .990, that’s a 1% reduction. You can’t have an IRR less than 0.
Anything between 0 and .999 means you’re reducing the incidence. Anything over 1
means you’re increasing the incidence.

If the IRR is less than 1…



Let’s look at another set of outcomes.

We’ll use the same database.  And the same dependent variable.
But use a different set of predictors.

So the regression model will be familiar, but entirely new.

So	the		following	outputs	are	from	an	entirely	new	Poisson	regression,
run	in the exact same way, just containing different predictors.



Here are the means and standard deviations 
for the dependent variable and the seven 
predictors used in this model:



Here’s the Goodness of Fit table.

Again, you’re looking at that top right number 
(ideally it’s around 1 as opposed to 15 or 20 or 
150) and at AIC and BIC, making sure they’re 
not huge.



Here’s the Omnibus Test.

Because p<0.05 (its less than 0.001 here), this 
collection of predictors is better than the null 
model.  There is improvement in “fitness”.  



And here are the Parameter Estimates.
This is the table of values you report.

Remember: You only need to know 
the last four columns in this table:

“Sig.” (i.e., p-value)
“Exp(B)” (i.e., IRR)
Bottom of the 95% CI
Top of the 95% CI

The first column (B) is your unstandardized regression coefficient. You can ignore it and nobody will ask you about it, but it’s is
the predicted change in your expected logged count of previous hospital admissions. Every one-unit increase in your predictor
variable (age, whether you have dementia, etc.) predicts the logged count of your dependent (number of hospital visits) to change
by that much. It’s too complicated of a statistic. No point in reporting it. The numbers are effectively meaningless to everybody
who doesn’t immediately start playing around with a calculator. Report the IRR, the significance, and the confidence interval.
That’s all.



And here are the Parameter Estimates.
This is the table of values you report.

Remember: IRR = Incidence Response Rate.  Multiply the number of expected counts (i.e., number of hockey goals in a game or number of 
workouts in a week or, in this case, the number of hospital admissions owing to fall-related injuries) by the IRR, which is written as Exp(B). 

Interpretation of a single row (you 
can interpret every other row in the 
same way): Dementia.  If dementia
is the variable of interest, you report:
Holding the other five predictors
(age, poor balance, etc.) constant, 
having dementia predicts a 26.2% 
increase in the number of previous 
hospitalizations for falls (p=0.027; 
95% CI of IRR: 1.027 to 1.549).



What if there is overdispersion and a negative binomial regression 
(as opposed to Poisson) needs to be run? 

Open up a Generalized Linear 
Model and go to the Type of 
Model tab.  It’ll look like this:



What if there is overdispersion and a negative binomial regression 
(as opposed to Poisson) needs to be run? 

Select “Custom” in the Custom 
section.  

Select “Negative Binomial” in 
the Distribution section.  

And select “Log” in the Link 
function section.

The default setting for the dispersion 
parameter is 1.  I’ll leave it at 1; you 
can set it to 0 if that creates a more 
appropriate model.



Then fill out all the other tabs exactly as you did before and hit OK.

• We’re using the same predictors as we did in our first Poisson regression

These are the four predictors.  In regression models, 
“independents” are generally referred to as “predictors” 
owing to the fact that they might not be independent of 
each other.  Predictor is a better term.

The only thing we’re changing in this model is making it 
negative binomial as opposed to Poisson.  The dependent 
variable and predictors are identical.



Outputs:

• Your “Model Information” box (first box you encounter) will reflect           
a negative binomial regression



Outputs:

• In the “Goodness of Fit” box, you’ll have new fitness values:
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In this case, the Poisson is 
better than the negative 
binomial model.

Look at AIC, BIC, and ratio of 
deviance to degrees of freedom.  
All of those are better (AIC and 
BIC are lower and deviance/df
is closer to 1) in the Poisson.  
Each of those values would be 
different if you set the dispersion 
parameter to 0 instead of 1.



Outputs:

• You’ll have new Parameter Estimates Original (Poisson) model:

New (negative binomial) model:

The significance changes based on what kind of model 
you’re running.  The original (Poisson) model is better.

Again: Incidence Rate Ratio is the important statistic.  
Changes in IRR mean that for every one unit increase 
in predictor variable, you multiply the frequency of the 
event happening (count of your dependent variable) by 
that number.  So a value of 1 means no changes in 
incidence rate (number of times the outcome happens).  
Value of less than 1 means incidence rate decreases.  
More than 1: incidence rate increases.



Decide which model type (Poisson or negative binomial) is most
appropriate based on distribution of data (i.e., means vs. variances,
ratio of deviance to degrees of freedom) and not by which model
gives you more encouraging p-values.


